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Abstract

Understanding fluctuating selection is important for our understanding of patterns of spatial and
temporal diversity in nature. Host–parasite theory has classically assumed fluctuations either occur
between highly specific genotypes (matching allele: MA) or from specialism to generalism (gene-
for-gene: GFG). However, while MA can only generate one mode of fluctuating selection, we
show that GFG can in fact produce both rapid ‘within-range’ fluctuations (among genotypes with
identical levels of investment but which specialise on different subsets of the population) and
slower cycling ‘between ranges’ (different levels of investment), emphasising that MA is a subset
of GFG. Our findings closely match empirical observations, although sampling rates need to be
high to detect these novel dynamics empirically. Within-range cycling is an overlooked process by
which fluctuating selection can occur in nature, suggesting that fluctuating selection may be a
more common and important process than previously thought in generating and maintaining
diversity.
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INTRODUCTION

Fluctuating selection – where the strength or direction of
selection changes through time – is a core concept in evolu-
tionary biology (Haldane & Jayakar 1963). The causes and
implications of fluctuating selection are therefore the focus of
much theoretical and empirical research. This is especially true
in the context of host–parasite coevolution, where fluctuating
selection driven by antagonistic interactions is central to the
theories of spatial and temporal diversity (Clarke 1979; Meyer
& Thomson 2001), the evolution of sex (Maynard Smith 1978;
Hamilton 1980), and parasite-mediated sexual selection
(Hamilton & Zuk 1982; Ashby & Boots 2015). Fluctuating
selection is of particular importance in antagonistic coevolu-
tion because unlike directional selection (arms races), which
must eventually be curtailed due to fitness costs or limits to
adaptation (e.g. Hall et al. 2011), fluctuating selection can
potentially be maintained indefinitely. However, not all forms
of fluctuating selection are alike, both in terms of the gene fre-
quency dynamics (e.g. periodic, chaotic or stochastic cycling)
and, importantly, the phenotypic dynamics (e.g. fluctuations
among specialists or between specialists and generalists). The
precise nature of the genetic and phenotypic dynamics is cru-
cial for theories that depend on fluctuating selection (Parker
1994; Peters & Lively 1999) and for understanding empirical
observations of host–parasite coevolution (Dybdahl & Lively
1998; Decaestecker et al. 2007; Gomez & Buckling 2011; Hall
et al. 2011; Luijckx et al. 2013; G�omez et al. 2015). Improving
our understanding of this process, in particular how it
depends on genetic interactions and the environment, has

important implications across a wide range of questions in
evolutionary biology.
Theoreticians have largely focused on studying how the

underlying genetic interactions between hosts and parasites
affect the mode of fluctuating selection. As a result two
frameworks, known as ‘matching allele’ (MA) and ‘gene-for-
gene’ (GFG), have emerged as the dominant paradigms for
understanding the role of genetic interactions in shaping
coevolutionary dynamics. Although both models readily pro-
duce fluctuating selection, the underlying assumptions and
resulting dynamics differ greatly. In the MA model – which
emerged from classical niche theory and resembles self/non-
self recognition systems in animals (Grosberg & Hart 2000) –
parasites need to genetically ‘match’ a host for successful
infection. Hosts therefore attempt to avoid the most common
parasite and parasites seek to match the most common host
(Yu 1972; Seger & Hamilton 1988; Frank 1993b). This indi-
rect negative frequency dependence typically leads to fluctuat-
ing selection between equally highly specific genotypes. In
contrast, the GFG model, which originally stemmed from
observations of plant pathogens (Flor 1956; Thompson &
Burdon 1992), assumes that hosts and parasites vary in the
range of genotypes that can be resisted or infected, with
broader ranges potentially associated with fitness costs (Mode
1958; Jayakar 1970; Leonard 1977, 1994; Frank 1993a; Parker
1994; Sasaki 2000; Segarra 2005; Tellier & Brown 2007a,b).
The GFG model produces a much wider variety of outcomes
than the MA model, including stable genetic polymorphisms
either within a single range of infectivity or defence (Sasaki
2000; Segarra 2005) or across multiple ranges if there is direct

1Department of Mathematical Sciences, University of Bath Bath BA2 7AY,

UK
2Integrative Biology, University of California Berkeley, Berkeley, CA, USA

3Department of Biosciences, College of Life and Environmental Sciences,

University of Exeter, Penryn TR10 9EZ, UK

*Correspondence: E-mail: benashbyevo@gmail.com

© 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

Ecology Letters, (2017) doi: 10.1111/ele.12734

http://creativecommons.org/licenses/by/4.0/


frequency dependence (Tellier & Brown 2007a,b), and fluctu-
ating selection between narrow-range specialists and broad-
range generalists (i.e. cycling between ranges) (e.g. Leonard
1994; Sasaki 2000; Agrawal & Lively 2002). Continuous ana-
logues of the MA and GFG models exhibit broadly similar
dynamics to their discrete counterparts, with pure ‘matching’
models akin to MA only exhibiting fluctuating selection
between equally highly specific genotypes and ‘range’ models
akin to GFG generating stable mono- or polymorphism or
fluctuating selection between specialism and generalism (Best
et al. 2010; Boots et al. 2014).
The contrasting assumptions and dynamics of MA and GFG

genetics have sparked considerable debate as to which model is
more realistic (Frank 1993a,b, 1996; Parker 1994, 1996), lead-
ing to the development of multiple variations on the core
frameworks (Parker 1994; Agrawal & Lively 2002, 2003; Fen-
ton et al. 2009, 2012; G�omez et al. 2015) and experiments to
detect the underlying genetics or coevolutionary dynamics of
real systems (Dybdahl & Lively 1998; Buckling & Rainey 2002;
Thrall & Burdon 2003; Decaestecker et al. 2007; Hall et al.
2011; Scanlan et al. 2011; Luijckx et al. 2013). There is no rea-
son to suspect that all host–parasite interactions will conform
to a single framework – in fact, Parker (1994) and Agrawal &
Lively (2002) argue that MA and GFG can be considered as
the extremes of a continuum – yet the majority of empirical evi-
dence (from bacteria and phages: Bohannan & Lenski 2000;
Mizoguchi et al. 2003; Scanlan et al. 2011; Flores et al. 2011;
fruit flies and sigma virus: Bangham et al. 2007; and plant
pathogens: Flor 1956; Thompson & Burdon 1992) supports the
notion that hosts and parasites vary in their degree of speciali-
sation, in general agreement with the GFG model (although
see Dybdahl & Lively 1998; Luijckx et al. 2013 for examples of
limited variation in the degree of specialisation).
The potential for other modes of fluctuating selection in the

GFG model and their implications for core biological phe-
nomena have been overlooked in existing theory. For exam-
ple, empirical observations of fluctuating selection among
specialists are taken to be indicative of MA rather than GFG
genetics (Dybdahl & Lively 1998; Luijckx et al. 2013). Addi-
tionally, the MA model is thought to be much more favour-
able to the evolution of sex than the GFG model due to the
nature of the cycles (Parker 1994; Peters & Lively 1999; Lively
2010), yet this is based on the prediction that the GFG model
only generates fluctuating selection between, but not within,
ranges. There is therefore a clear need to understand the full
range of fluctuating selection dynamics in the GFG model.
Given the high level of interest in how infection genetics shape
coevolutionary dynamics, especially their influence on whether
fluctuating selection occurs within or between ranges, we con-
duct a thorough reanalysis of the GFG framework. We pri-
marily explore the dynamics of a simple population genetics
model that lacks ecology, but we verify our key results using
a more realistic epidemiological model that includes density
dependence. Despite being overlooked in a large number of
theoretical studies, we find that the GFG framework can
indeed readily generate within-range cycling. We go on to
demonstrate that the GFG model can simultaneously generate
high-frequency fluctuating selection within-ranges and low-fre-
quency fluctuating selection between ranges. We discuss our

results in the context of empirical observations and the wider
theoretical literature.

METHODS AND RESULTS

Non-ecological model

We adapt a simple multilocus gene-for-gene (GFG) model of
host–parasite coevolution where population sizes are assumed
to be constant (Sasaki 2000). Both populations have overlap-
ping generations, are haploid, asexual, well mixed, and suffi-
ciently large so that we can ignore the effects of drift. Host
and parasite genotypes (x and y, respectively) are each charac-
terised by n biallelic loci (i.e. x ¼ x1; x2; . . .; xnf g and
y = {y1, y2, . . ., yn}), which represent the presence, 1, or the
absence, 0, of resistance or infectivity alleles. We define the
‘range’ of a genotype to be the proportion of loci that have
resistance or infectivity alleles (Ashby et al. 2014a,b). For
example, a genotype represented by the binary string 00101
has a range of 2/5 and a genotype represented by the string
11101 has a range of 4/5. Each resistance allele is only effec-
tive in the absence of an infectivity allele at the corresponding
locus. The total number of effective resistance alleles is there-

fore dxy ¼
Pn
i¼1

xið1� yiÞ, and the probability of successful

exploitation is Q(x, y). Investment in resistance and infectivity
is associated with a fitness cost given by CH jxjð Þ for hosts and
CP jyjð Þ for parasites, where |x| is the range of genotype x.
Note that CH jxjð Þ and CP jyjð Þ are decreasing functions, with
CH 0ð Þ ¼ CP 0ð Þ ¼ 1 (i.e. lower values of CH jxjð Þ and CP jyjð Þ
imply higher costs). Adapting Sasaki (2000) accordingly, the
fitnesses of hosts ðmHÞ and of parasites (mP) are given by:

mHðxÞ ¼ CH jxjð Þ exp �bH
X

y
Q x; yð ÞfP yð Þ

� �
ð1Þ

mP yð Þ ¼ CP jyjð Þ exp bP
X

x
Q x; yð ÞfP xð Þ

� �
ð2Þ

where bH and bP are the effects of successful exploitation on
host and parasite fitness, and fH(x) and fP(y) are the frequen-
cies of genotypes x and y, respectively. Genotype frequenc-
ies change according to the following ordinary differential
equations:

dfHðxÞ
dt

¼ mH xð Þ
MH

� 1

� �
fH xð Þ ð3Þ

dfPðyÞ
dt

¼ mP yð Þ
MP

� 1

� �
fPðyÞ ð4Þ

where MH ¼ P
x mH xð ÞfH xð Þ and MP ¼ P

y mP yð ÞfP yð Þ are
the mean fitness values of each population.
For fluctuating selection to occur within a constant range,

an intermediate number of alleles (i.e. an intermediate range)
must be optimal. This is because there is no variation at
extreme ranges in the GFG model (i.e. there is only one geno-
type with a range of 0 or 1) and so fluctuating selection can-
not occur. Suppose the optimal resistance range is u and the
optimal infectivity range is v (note that the optimal range for
hosts may differ to the optimal range for parasites). for u and
v to be stable, the following conditions must be satisfied for
all other permissible ranges u0 6¼ u and v0 6¼ v:
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CH uð Þ
CH u0ð Þ [ e�bH Qu0 ;v�Qu;vð Þ ð5Þ

Cp vð Þ
Cp v0ð Þ [ ebp Qu;v0 �Qu;vð Þ ð6Þ

where Qu;v is the mean infectivity at equilibrium (i.e. with all
genotypes at the same frequency), and Qu0;v and Qu;v0 are the
mean susceptibility and mean infectivity of rare host and par-
asite genotypes with ranges u0 and v0, respectively, with all
other genotypes at equilibrium frequencies. When the first
condition is satisfied, no other hosts can invade, and when the
second condition is satisfied, no other parasites can invade.
Biologically, these conditions imply that the fitness gain due
to increased resistance or infectivity above the optimal range
is less than the associated increase in pleiotropic fitness costs,
and similarly that the fitness loss due to decreased resistance
or infectivity below the optimal range is greater than the asso-
ciated decrease in fitness costs. It is straightforward to intuit
that the cost functions must eventually accelerate faster than
the infection terms for intermediate ranges to be stable in
both populations (otherwise the system will fluctuate between
ranges or an extreme genotype will exclude all others in at
least one population).
We will now explore if genotypes with the optimal number

of alleles tend towards a stable equilibrium or cycle

indefinitely. Suppose that there are n ≥ 2 loci and suitable cost
and interaction terms have been chosen such that the optimal
number of resistance and infectivity alleles is 0 < U < n and
0 < V < n, respectively. Assuming all possible genotypes are

present, the system contains h0 ¼ n
U

� �
hosts and p0 ¼ n

V

� �

parasites, where the brackets correspond to binomial coeffi-
cients (‘n choose U’ and ‘n choose V’). There is no inherent
difference between genotypes with the same number of resis-
tance or infectivity alleles, so we can ignore the cost functions
and only need to consider the stability of the fixed point
fH(x) = 1/h0 and fP(y) = 1/p0 for all suitable genotypes x and
y. Note that we can always reduce the dimensionality of the
system because genotype frequencies must sum to one. The
Jacobian of the system at the internal fixed point is of the
form:

J ¼ 0 A
B 0

� �
ð7Þ

where A and B are h0 � 1ð Þ � h0 � 1ð Þ and p0 � 1ð Þ � p0 � 1ð Þ
matrices. At the fixed point, the system contains imaginary
eigenvalues of the form k ¼ �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�bbHbP
p

(with a, b > 0) and
so the system can exhibit fluctuating selection in the form of
neutrally stable cycles. This means that the amplitude of the
cycles depends on the initial conditions, and so hosts and
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Figure 1 Within-range fluctuating selection in the non-ecological model (eqns 1–4) with (a) 2, (b) 3 and (c) 4 loci. (ai–ci) Evolutionary trajectories converge to

neutrally stable cycles around the internal fixed point (star) with the amplitude determined by initial conditions (in (ai) the associated vector field is shown by

grey arrows). (aii–cii) and (aiii–ciii) show host and parasite allele frequencies, respectively. (aiv–civ) and (av–cv) show host and parasite ranges, respectively

(i.e. the proportion of loci that have resistance or infectivity alleles). The cost function used here is CHðjxjÞ ¼ 1� c1Hð1� expðc2HjxjÞÞ=ð1-expðc2HÞÞ for hosts,
and similarly for parasites. The infectivity function is given by Q(x, y) = rd(x,y). Fixed parameters: c2H ¼ 3; c2P ¼ 3;bH ¼ 1; bP ¼ 1; q ¼ 0:85. Other parameters:

(a) c1H ¼ 0:2; c1P ¼ 0:2; (b) c1H ¼ 0:15; c1P ¼ 0:15; (c) c1H ¼ 0:1; c1P ¼ 0:2.
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parasites will not settle into a stable limit cycle. Simulations
reveal that the system does indeed exhibit within-range fluctu-
ating selection (Fig. 1). Interestingly, the system effectively
becomes indistinguishable from a partial matching allele or
inverse matching allele model when an intermediate number of
alleles is optimal for both populations (Fig. 2). In other words,
all genotypes experience the same costs and specialise on differ-
ent subsets of the other population.
Figure 3 shows a phase diagram for the non-ecological model

with suitable cost and interaction functions. The system can
exhibit three qualitatively different coevolutionary dynamics:
(1) equilibrium (when at least one population maximises or min-
imises investment); (2) fluctuating selection between genotypes
with the same range (when an optimal intermediate range exists
for both populations); and (3) fluctuating selection between
genotypes with different ranges (when there is no optimal
range). In fact, the two types of fluctuating selection are not
mutually exclusive: when fluctuating selection occurs between
ranges the system also exhibits within-range cycling, although
the latter usually occurs over much shorter timescales (Fig. 4).
It is interesting to note that our model predicts a much lar-

ger number of coevolutionary outcomes than previous GFG
theory, since any combination of intermediate host and para-
site ranges can be optimal depending on the curvature and
relative strength of the fitness costs. As fitness costs are likely
to vary by environment due to factors such as resource avail-
ability and parasite abundance, we should therefore expect to
see divergence in optimal resistance and infectivity ranges
between populations even if the qualitative dynamics (i.e.
within-range cycling) are similar (Fig. 5).
In summary, our simple non-ecological model reveals that if

an intermediate number of alleles is optimal for both popula-
tions, the system will exhibit fluctuating selection within rather
than between ranges. Although we have focused our analysis
on the fitness functions proposed by Sasaki (2000) and

extended by others (e.g. Fenton & Brockhurst 2007), within-
range fluctuating selection does not depend in the specific
functional forms used in the model. Indeed we found within-
range fluctuating selection to be very common, occurring for
a variety of functional forms (Figs S1–S3).

Ecological model

The simple population genetics model (eqns 1–4) assumes that
population sizes are constant, but ecological feedbacks can
potentially qualitatively alter coevolutionary dynamics. We
therefore verify our key results using the following epidemio-
logical model:

dSx

dt
¼ aCHð xj jÞ � dNð Þ Sx þ f

X
y
Ixy

� �
� bSx

� bSx

X
y
CP yj jð ÞQðx; yÞ þ c

X
y
Ixy ð8Þ

dIxy
dt

¼ bCP yj jð ÞQðx; yÞSxIy � aþ bþ cð ÞIxy ð9Þ

where: Sx, Iy and Ixy are the densities of susceptible hosts of
genotype x, hosts infected by parasite genotype y and hosts
of genotype x infected by parasite genotype y; N ¼P

x Sx þ
P

y Iy is the total population size; a and b are the base-

line birth and death rates, with d equal to the strength of den-
sity-dependent competition on births and f the reduction in
births due to infection; a, b; and c are the disease-associated
mortality, maximum transmission, and recovery rates.
We determine the coevolutionary dynamics of the epidemio-

logical model numerically, as the presence of ecological feed-
backs and hence direct frequency-dependent selection greatly
limits analytic tractability. Figure 6 shows that our key results
from the non-ecological model – (1) accelerating costs can
induce within-range fluctuating selection and (2) fluctuating
selection within and between ranges can occur simultaneously
but over contrasting timescales – carry over to the more real-
istic epidemiological model. One notable difference in the full
epidemiological model is that coevolutionary cycles are
damped unless there is full castration f ¼ 0ð Þ and no recovery
c ¼ 0ð Þ, in which case the model behaves as a predator–prey
system (Ashby & Gupta 2014). However, the strength of
damping in the present model is typically very weak and so
cycles tend to persist for a very long time.

DISCUSSION

By reanalysing the core assumptions of the classic gene-for-
gene (GFG) model, we have discovered a previously over-
looked form of fluctuating selection. Not only does the GFG
model produce fluctuating selection from specialism to gener-
alism (cycling between ranges as predicted by existing theory;
Leonard 1994; Sasaki 2000; Agrawal & Lively 2002), but it
can also generate cycles between genotypes with the same level
of investment but which specialise on different subsets of the
population (within-range cycling). As such, matching allele
(MA)-like fluctuating selection also arises in GFG models.
Given the importance of these dynamics for generating and
maintaining patterns of spatial and temporal diversity, and
the implications for biological phenomena, such as sex

Figure 2 Example infection matrix for a 3 locus gene-for-gene (GFG)

model. The four quadrants (dotted white regions) show that the matching

allele (MA, top left and bottom right) and inverse matching allele (IMA,

bottom left and top right) models are subsets of the GFG framework.

The GFG framework is therefore indistinguishable from an MA or IMA

model when an intermediate number of alleles is optimal. Host and

parasite genotypes are given by binary strings, where a ‘1’ or a ‘0’ at a

particular locus indicates the presence or absence, respectively, of a

resistance or infectivity allele. Darker shading indicates greater infectivity.
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and mate choice, our results suggest that fluctuating selection
may be much more common in nature than previously thought.
The GFG model generates within-range cycling when costs

associated with generalism accelerate such that an intermedi-
ate number of alleles is optimal, at which point fluctuating
selection proceeds between genotypes that have the same
number of resistance or infectivity alleles, but which specialise
on different subsets of the population. A key corollary of this
result is that the system eventually becomes indistinguishable
from an MA or inverse MA model (Fig. 2). For example, if
there are 3 loci and the optimal range for hosts and parasites
is 1/3, then eventually only genotypes 001, 010 and 100
remain in each population. Parasites therefore specialise on a
particular ‘matching’ genotype, as in the MA model. If
instead the optimal host range is 2/3, then eventually only
host genotypes 011, 101 and 110 are present with resistance
highest against parasites 100, 010 and 001, respectively (i.e. an
inverse MA model). Our study therefore offers an alternative
interpretation of the relationship between MA and GFG
genetics: MA models can be considered subsets of the GFG
framework, rather than each existing at the ends of a contin-
uum (Parker 1994; Agrawal & Lively 2002).
A major insight from our study is that fluctuating selection

within and between ranges can occur simultaneously, but typi-
cally operate over vastly different timescales (Figs 4 and 6).
Fluctuating selection between ranges is typically a much slower
process than within-range fluctuating selection, with average
periods differing by up to two orders of magnitude in our sim-
ulations. The stark contrast in frequency can be attributed to
the underlying mechanism that generates the cycles. Within-
range cycling is generated by differences in specialisation,

which can readily cause large variations in fitness due to nega-
tive frequency dependence, but the advantage is short-lived.
Cycling between ranges, however, is caused by differences in
fitness costs, which are likely to have a relatively minor impact
compared to differences in specialisation. For example, para-
site genotype 011 could have a large fitness advantage over
genotypes 101 and 110 when host genotypes 001 and 010 are
the most common, but parasites genotypes 001 and 010 may
gradually invade because they experience marginally lower fit-
ness costs. Our numerical simulations demonstrate that the dif-
ferent mechanisms can lead to long periods where ranges
remain roughly constant, before suddenly shifting to another
level of investment (e.g. Figs 4a and 6b).
We verified our results in a more realistic epidemiological

model and found that coevolutionary cycles are damped, in line
with previous theory (Kouyos et al. 2007; Ashby & Gupta
2014). However, the strength of damping in our simulations was
typically very weak, allowing fluctuating selection to be main-
tained over many thousands of generations. In nature, such
oscillations are likely to persist indefinitely due to resonance
from environmental effects (e.g. seasonal forcing; Earn et al.
2000), drift (Kouyos et al. 2007), or the synchronisation of eco-
logical processes (e.g. annual births, May 1973). As such, epi-
demiology impacts the nature and likelihood of fluctuating
selection qualitatively as predicted from previous theory (Kouyos
et al. 2007; Ashby & Gupta 2014), but does not impact quantita-
tively on our results or change the key insights from our work.
Given the extensive history of theoretical research on the GFG

framework since its inception in the 1950s (Flor 1956; Mode
1958), it is surprising that within-range fluctuating selection has
been overlooked for so long, but there are several possible
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Figure 5 Fitness costs may vary across the environment leading to within-range cycling in all, but at different optimal ranges. Boxes correspond to different
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explanations. For example, studies that consider GFG interac-
tions at a single locus cannot generate within-range cycling due
to the lack of intermediate ranges in these models (Jayakar 1970;
Leonard 1977, 1994; Tellier & Brown 2007b). However, a large
number of studies do consider multilocus interactions and so in
principle should be able to generate within-range fluctuating
selection, but instead cycle between ranges or reach a stable equi-
librium (Mode 1958; Frank 1993a; Parker 1994; Sasaki 2000;
Agrawal & Lively 2002; Segarra 2005; Fenton & Brockhurst
2007; Fenton et al. 2009). We note that Sasaki (2000) and
Segarra (2005) briefly discussed how the GFG model can be
‘doubly cyclic’ in terms of genotype frequencies and range, but
neither elaborated on the contrasting nature of the cycles, nor
did they find within-range cycling in isolation.
The closest studies to our own are those by Sasaki (2000)

and Fenton & Brockhurst (2007), who use the same core fit-
ness functions and genetic interactions used herein. Sasaki
(2000) (along with most other studies, e.g. Frank 1993a; Par-
ker 1994; Agrawal & Lively 2002; Segarra 2005; Fenton et al.
2009) only considered decelerating fitness costs (negative epis-
tasis), but as a consequence intermediate ranges are never opti-
mal for both host and parasite and so within-range fluctuating

selection cannot occur. Fenton & Brockhurst (2007) extended
Sasaki’s multilocus GFG model to consider the impact of
accelerating and linear fitness costs on the coevolutionary
dynamics, but while the authors found that non-negative epis-
tasis tends to increase the likelihood of coevolutionary cycling
the study did not report qualitatively new dynamics. However,
we have shown that accelerating costs do generate qualita-
tively new dynamics in the form of within-range cycling. It is
likely that these dynamics were simply overlooked, as the
authors focused on the impact of epistasis on the propensity
for coevolutionary cycling, rather than the nature of the cycles
themselves. Moreover, within-range cycling would not have
been detected if the qualitative outcomes were determined by
measuring variance in individual genotype frequencies rather
than variance when genotypes are grouped by resistance or
infectivity range. It is noteworthy that although within-range
fluctuating selection has not previously been observed in mod-
els of host–parasite coevolution, the dynamics are somewhat
similar to a recent quantitative trait model of plant–herbivore
coevolution, wherein periods of escalation in toxin/antitoxin
production generally give way to fluctuations in the levels of
different toxins and antitoxins (Speed et al. 2015).
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The present study improves our understanding of the rela-
tionship between host–parasite genetics and fluctuating selec-
tion, with links to a wide range of biological phenomena
including the evolution of sex (Maynard Smith 1978; Hamilton
1980), parasite-mediated sexual selection (Hamilton & Zuk
1982; Ashby & Boots 2015), and patterns of diversity across
space and time (Clarke 1979; Meyer & Thomson 2001). The
theoretical literature on the relationship between genetics and
fluctuating selection has been largely driven by the so-called
‘Red Queen Hypothesis’ (RQH), which posits that antagonistic
coevolution can offset costs associated with sex (Maynard
Smith 1978). High genetic specificity – hence within-range,
rather than between-range cycling – appears to be required to
favour sex (Parker 1994) and so most RQH studies use the
MA model or variants thereof (see review by Lively 2010; and
discussion by Ashby & King 2015). Our demonstration that
the GFG framework can indeed produce within-range cycling
should renew interest in how non-MA genetic interactions
affect the RQH. More generally, there is a clear need to study
fluctuating selection outside the realm of MA- and GFG-
based theory (Best et al. 2010; Ashby & Boots 2015).
Our results help to explain several empirical observations.

For example, experimental coevolution of bacteria and phages
has shown that: (1) fluctuating selection can simultaneously
occur both within and between ranges (Lopez Pascua et al.
2014); (2) populations can exhibit arms race dynamics with
reciprocal increases in resistance and infectivity associated
with fitness costs (Scanlan et al. 2011); (3) arms race dynamics
eventually give way to fluctuating selection between genotypes
with similar ranges (Hall et al. 2011); (4) phages are locally
adapted (Vos et al. 2009); and (5) changes in the environment
can shift the initial dynamics from an arms race to fluctuating
selection (G�omez et al. 2015). To the best of our knowledge,
the GFG framework has never been shown to exhibit ‘true’
arms race dynamics where reciprocal increases in resistance
and infectivity are not followed by subsequent decreases in
range (except in the absence of fitness costs). With accelerat-
ing fitness costs, however, we see multiple reciprocal increases
in resistance and infectivity until the optimal range is reached,
after which the dynamics are dominated by within-range fluc-
tuating selection (Figs 1 and 5; explains (2) and (3) above).
These dynamics promote local adaptation, as even when pop-
ulations have the same range the within-range cycles are likely
to be out of phase with each other (explains (4) above). Fur-
thermore, there is no single connected region in the phase-
plane where cycles occur between ranges (Fig. 3) and so rela-
tively minor changes in the environment could lead to a sud-
den shift from arms races to between-range fluctuating
selection (explains (5) above). Another empirical example
comes from a wild metapopulation of the plant
Linum marginale and fungal pathogen Melampsora lini where
there is considerable spatial variation in resistance and infec-
tivity ranges (Thrall & Burdon 2003). Our model suggests this
pattern can be explained by variation in fitness costs between
patches leading to different optimal ranges in each population
(Fig. 5). Although the notion of a geographic mosaic of
coevolution due to environmental variation is well established
(Thompson 2005), here we have shown that the GFG model
can readily generate such patterns.

In addition to explaining existing data, our findings have a
number of important implications for future empirical work.
First, the detection of within-range fluctuating selection in
empirical studies does not preclude fluctuating selection
between ranges over longer timescales. Second, our results
suggest that a low sampling rate may provide evidence of fluc-
tuating selection between ranges without capturing higher fre-
quency cycling within-ranges. Finally, there has been much
theoretical discussion about whether the MA or GFG frame-
work is more realistic (Frank 1993a,b, 1996; Parker 1994,
1996) and much empirical research as to whether particular
systems conform to one model or the other (Dybdahl &
Lively 1998; Scanlan et al. 2011; Luijckx et al. 2013). Our
study makes the crucial point that the MA framework is
effectively a subset of the GFG model.
In conclusion, we have shown that a simple GFG model

can generate fluctuating selection both within and between
levels of infectivity and defence, in contrast to previous the-
ory. Our study clarifies the relationship between the two
dominant models of infection genetics and provides a num-
ber of useful insights and predictions for empirical work.
Crucially, our results suggest that not only is fluctuating
selection likely to be more common in nature than
previously thought, but also rapid cycling between genotypes
with similar levels of infectivity and defence should be
widespread.
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